Ion Beam Sputtering for High- and Anti-Reflective Coatings
Ion beam sputtering is well-established in research and industry for optical coatings. Typical applications are coatings of precision optics, like filters, mirrors, and beam splitters. Optical multilayer stacks benefit from the high mobility of the sputtered particles on the substrate surface, and hence the good mechanical characteristics of the layers. The principle of ion beam sputtering is the ejection of target material by bombardment with high energy ions. The control of the ion energy allows material removal with Angstrom accuracy. In contrast to magnetron sputtering the low base pressure of 10-4 mbar and temperatures below 100 °C result in low contamination and high quality coatings. This is further supported by the higher energy (mobility) of the incoming material on the substrate compared to magnetron sputtering or thermal evaporation. Thus, also the density of the deposited material is usually larger by enhanced self-organization processes. These film properties make ion beam sputtering the preferred deposition method for high quality optical coatings.
For coatings in the visible and near-infrared wavelength regions oxides are usually used due to their negligible absorption in this range. Furthermore, oxides are stable in air and usually hazard-free. Oxide thin films can be deposited in the scia Systems deposition systems either reactivly, by ion beam sputtering of an elemental target in oxygen atmosphere, or by direct sputtering of an oxide target.
...
Reach out
Please contact us for further information.
Related Information
Related Products - scia Coat 200 and scia Coat 500
- In-situ change of coating materials due to rotational target holder with up to 5 water cooled targets
- Controlled multilayer deposition based on process recipe
- Process monitoring with quartz crystal oscillator and/or optical thickness monitor (OTM) and test glass changer
- Direct wafer handling or adaptation to variable substrate sizes with carrier handling